ความรู้พื้นฐานเกี่ยวกับออกซินนั้นเกิดขึ้นจากงานของ Charles Darwin ซึ่งศึกษาเรื่อง Phototropism ซึ่งพืชจะโค้งงอเข้าหาแสง Darwin ทดลองกับต้นกล้าของ Phalaris canariensis และพบว่าโคลีออพไทล์ของพืชชนิดนี้จะตอบสนองต่อการได้รับแสงเพียงด้านเดียวทำให้เกิดการโค้งเข้าหาแสง Darwin สรุปว่าเมื่อต้นกล้าได้รับแสงจะทำให้มี "อิทธิพล" (Influence) บางอย่างส่งผ่านจากส่วนยอดมายังส่วนล่างของโคลีออพไทล์ ทำให้เกิดการโค้งงอเข้าหาแสง ซึ่งนักวิทยาศาสตร์รุ่นต่อมาได้ศึกษาถึง "อิทธิพล" ดังกล่าว
ต่อมา Boysen-Jensen และ Arpad Paal ได้ศึกษาและแสดงให้เห็นว่า "อิทธิพล" ดังกล่าวนี้มีสภาพเป็นสารเคมี ซึ่งในสภาพที่โคลีออพไทล์ได้รับแสงเท่ากันทั้งสองด้าน สารเคมีนี้จะเคลื่อนที่ลงสู่ส่วนล่างของโคลีออพไทล์ ในอัตราเท่ากันทุกด้านและทำหน้าที่เป็นสารกระตุ้นการเจริญเติบโต
ที่มา : http://www2.mcdaniel.edu/Biology/botf99/hormweb/39-04-EarlyExpPhototrop-L.gif
ในปี ค.ศ. 1926 Went ได้ทำงานทดลองและสามารถแยกสารชนิดนี้ออกจากโคลีออพไทล์ได้ โดยตัดส่วนยอดของโคลีออพไทล์ของข้าวโอ๊ตแล้ววางลงบนวุ้นจะทำให้สารเคมีที่กระตุ้นการเจริญเติบโตไหลลงสู่วุ้น เมื่อนำวุ้นไปวางลงที่ด้านหนึ่งของโคลีออพไทล์ที่ไม่มียอดด้านใดด้านหนึ่งจะทำให้โคลีออพไทล์ดังกล่าวโค้งได้ เขาสรุปว่าสารเคมีได้ซึมลงสู่วุ้นแล้วซึมจากวุ้นลงสู่ส่วนของโคลีออพไทล์ วิธีการดังกล่าวนอกจากเป็นวิธีการแรกที่แยกสารเคมีชนิดนี้ได้แล้ว ยังเป็นวิธีการวัดปริมาณของฮอร์โมนได้ด้วย เป็นวิธีที่เรียกว่า Bioassay
สารเคมีดังกล่าวได้รับการตั้งชื่อว่า ออกซิน (Auxin) ซึ่งในปัจจุบันพบในพืชชั้นสูงทั่วๆ ไป และมีความสำคัญต่อการเจริญเติบโตของพืช สังเคราะห์ได้จากส่วนเนื้อเยื่อเจริญของลำต้น ปลายราก ใบอ่อน ดอกและผล และพบมากที่บริเวณเนื้อเยื่อเจริญ โคลีออพไทด์และคัพภะ รวมทั้งใบที่กำลังเจริญด้วย
การสังเคราะห์ออกซิน
ในปี ค.ศ. 1934 ได้พบว่า ออกซินมีลักษณะทางเคมีเป็นสาร Indole-3-acetic acid หรือ เรียกย่อๆ ว่า IAA ซึ่งในปัจจุบันเชื่อว่าเป็นออกซินส่วนใหญ่ที่พบในพืชและในสภาพธรรมชาติ อยู่ในรูป Indole ทั้งสิ้น โดยที่ IAA เป็นสารที่สำคัญที่สุด นอกจากนั้นยังพบในรูปของ Indole-3-acetaldehyde หรือ IAAld Indole-3-Pyruvic acid หรือ IPyA และ Indole-3-acetonitrile หรือ IAN ซึ่งสารทั้ง 3 ชนิดนี้สามารถเปลี่ยนเป็นIAA ได้ พืชสังเคราะห์ออกซินที่ใบอ่อน จุดกำเนิดของใบและเมล็ดซึ่งกำลังเจริญเติบโต
การสังเคราะห์ออกซินนั้น มีกรดอะมิโน L-Tryptophan เป็นสารเริ่มต้น (Precursor) L-Tryptophan เป็นกรดอะมิโนที่มีโครงสร้างของ Indole อยู่ การสังเคราะห์ออกซิน ซึ่งในการสังเคราะห์ IAA นั้น จะมีIAAld และ IPyA เป็นสารที่พบในระหว่างการสังเคราะห์ ในพืชบางชนิด เช่น ข้าวโอ๊ต ยาสูบ มะเขือเทศ ทานตะวัน และข้าวบาร์เลย์ พบว่า Tryptophan สามารถเปลี่ยนเป็น Tryptamine ได้ ในพืชตระกูลกะหล่ำ Tryptamine อาจจะเปลี่ยนไปเป็น Indoleacetaldoxime แล้วเปลี่ยนไปเป็น IAN แล้วจึงเปลี่ยนเป็น IAA
การศึกษาเรื่องการสังเคราะห์ออกซินมักศึกษาจากเนื้อเยื่อปลายรากหรือปลายยอด และพบว่า IAA นี้สังเคราะห์ได้ทั้งในส่วนไซโตซอล (Cytosol) ไมโตคอนเดรีย และคลอโรพลาสต์ ในการศึกษาในปัจจุบันพบว่า Phenylacetic acid หรือ PAA มีคุณสมบัติของออกซินด้วย และสามารถสังเคราะห์ได้จาก L-Phenylalanine โดยพบในคลอโรพลาสต์ และไมโตคอนเดรียของทานตะวัน
สารสังเคราะห์ที่มีคุณสมบัติของออกซินมีหลายชนิดที่สำคัญทางการเกษตร เช่น สาร 2,4-dichlorophenoxyacetic acid หรือ 2,4-D ซึ่งใช้ในการกำจัดวัชพืช IBA หรือ Indole butyric acid ใช้ในการเร่งให้ส่วนที่จะนำไปปักชำเกิดรากเร็วขึ้น และ NAA หรือ Napthalene acetic acid จะช่วยในการติดผลของผลไม้บางชนิด เช่น แอปเปิล
ความสัมพันธ์ระหว่างโครงสร้างของโมเลกุลและการมีคุณสมบัติของออกซิน
เนื่องจากมีสารที่เกิดในธรรมชาติและสารสังเคราะห์จำนวนมากมีคุณสมบัติของออกซิน จึงจำเป็นต้องรู้โครงสร้างของโมเลกุลที่จะก่อให้เกิดคุณสมบัติของออกซินได้ ซึ่งมีการศึกษากันมาก ในขั้นต้น เข้าใจว่าสารที่จะมีคุณสมบัติของออกซินต้องประกอบด้วยวงแหวนที่ไม่อิ่มตัว มี side chain เป็นกรด ซึ่งต่อมาพบว่าไม่ใช่สาเหตุที่แท้จริง เพราะมีสารหลายชนิดที่ไม่มีลักษณะดังกล่าว แต่มีคุณสมบัติของออกซิน จากการศึกษาของ Thimann ในปี ค.ศ. 1963 ได้สรุปว่า โครงสร้างของโมเลกุลที่สำคัญของสารที่จะมีคุณสมบัติของออกซินคือ ต้องประกอบด้วยประจุลบ (Strong Negative Charge) ซึ่งเกิดจากการแตกตัวของกลุ่มคาร์บอกซิล และประจุลบจะต้องอยู่ห่างจากประจุบวก (Weaker Positive Charge) บนวงแหวนด้วยระยะทางประมาณ 5.5 Angstrom สมมุติฐานของ Thimann นับว่าใช้อธิบายโครงสร้างโมเลกุลของสารที่มีคุณสมบัติของออกซินได้ครบ
การสลายตัวของ IAA
ปริมาณของ IAA ในพืชนั้นไม่เพียงแต่ขึ้นอยู่กับอัตราการสังเคราะห์เท่านั้น แต่ยังขึ้นอยู่กับอัตราการสลายตัว ซึ่งการสลายตัวของ IAA นั้น สามารถเกิดขึ้นได้หลายวิธี
1. Photo-oxidation IAA ที่อยู่ในสภาพสารละลายจะสลายตัวได้เมื่อได้รับแสง การเกิด Photo-oxidation ของ IAA จะถูกเร่งโดยการปรากฏของรงควัตถุตามธรรมชาติ หรือที่สังเคราะห์ได้ จึงอาจจะเป็นไปได้ว่าการที่รงควัตถุของพืชดูดซับพลังงานจากแสงแล้วทำให้เกิดการออกซิไดซ์ IAA ซึ่งรงควัตถุที่เกี่ยวข้อง คือ ไรโบฟลาวินและไวโอลาแซนธิน (Riboflavin และ Violaxanthin) สารที่เกิดขึ้นเมื่อ IAAสลายตัวโดยแสงคือ 3-methylene-2-oxindole และ Indoleacetaldehyde
2. การออกซิไดซ์โดยเอนไซม์ (Enzymic Oxidation of IAA) พืชหลายชนิดมีเอนไซม์เรียกว่า IAA-oxidase ซึ่งจะคะตะไลท์ สลาย IAA ได้คาร์บอนไดออกไซด์ และเป็นปฏิกิริยาที่ใช้ออกซิเจน IAA-oxidase มีคุณสมบัติคล้ายเอนไซม์ประเภทเพอร์ออกซิเดส (Peroxidase) และเป็นเอนไซม์ที่ต้องการแมงกานีสเป็นโค-แฟคเตอร์ กระบวนการออกซิไดซ์ โดย IAA-oxidase ยังไม่เป็นที่เข้าใจกันมากนัก จากการทดลอง In vitro พบว่าผลิตภัณฑ์ที่ได้ คือ 3-methylene-2-oxindole และถูกเมตาโบไลซ์ต่อไป เป็น 3-methyl-2-oxindole มีการทดลองหลายครั้งที่ยืนยันว่า IAA-oxidase จะเพิ่มขึ้นเมื่ออายุของพืชเพิ่มมากขึ้น นอกจากนั้นยังมีความสัมพันธ์แบบผกผันระหว่างอัตราการเจริญเติบโตและปริมาณของ IAA-oxidase ในเนื้อเยื่อของรากจะมี IAA ในปริมาณต่ำ แต่มี IAA-oxidase เป็นจำนวนมาก
3. รวมกับสารชนิดอื่นในไซโตพลาสต์
4. เปลี่ยนเป็นอนุพันธ์ชนิดอื่น
การวัดปริมาณออกซิน
2. การวัดจากคุณสมบัติทางฟิสิกส์ คือ การวัดปริมาณของออกซินโดยใช้การดูดกลืนแสงของ IAA ซึ่งเมื่อมีความเข้มข้นต่างกันจะดูดกลืนแสงได้ต่างกัน โดยใช้ความยาวคลื่นแสงที่ 280 nm หรือสกัดจนเป็นสารบริสุทธิ์แล้วจึงใช้เครื่อง Gas Chromatograph ร่วมกับ Mass Spectrometry ในการจำแนกและหาปริมาณ
3. การวัดโดยวิธีเคมี โดยให้ออกซินทำปฏิกิริยากับ Salkowski's Reagent (acidified ferric chloride) หรือใช้ Ehrllch's Reagent ซึ่งจะเกิดสีขึ้นมา จากนั้นวัดความเข้มของสีแล้วเปรียบเทียบกับเส้นมาตรฐาน
จากส่วนของพืชที่มีการสังเคราะห์ ฮอร์โมนจะเคลื่อนย้ายไปสู่ส่วนอื่นๆ และมีผลกระทบต่อเนื้อเยื่อที่ได้รับฮอร์โมน การเคลื่อนที่จะถูกควบคุมอย่างดี การเคลื่อนที่ของออกซินจะเป็นแบบโพลาไรซ์(Polarized) คือ เคลื่อนที่ไปตามยาวของลำต้นโดยไปในทิศทางใดทิศทางหนึ่งมากกว่าทิศทางตรงกันข้าม ซึ่งการเคลื่อนที่แบบโพลาร์ (Polar) นี้จะเกี่ยวข้องกับการเจริญและการเปลี่ยนแปลงทางคุณภาพของพืชทั้งต้น
การเคลื่อนที่ของออกซินในส่วนที่อยู่เหนือดิน จะเป็นแบบโพลาร์ เบสิพีตัล (Polar Basipetal) คือ จะเคลื่อนที่จากแหล่งผลิตที่ยอดไปสู่โคนต้น ซึ่งการทดลองที่แสดงว่ามีการเคลื่อนที่แบบนี้สามารถทำได้โดยใช้ก้อนวุ้นที่เป็นแหล่งให้ออกซินและรับออกซิน (Donor-Receiver Agar Block) คือ ใช้ก้อนวุ้นที่มีออกซินอยู่วางบนท่อนของเนื้อเยื่อ ส่วนก้อนวุ้นอีกก้อนซึ่งทำหน้าที่รับออกซินอยู่อีกปลายหนึ่งของท่อนเนื้อเยื่อ ออกซินจะเคลื่อนที่จากก้อนวุ้นที่มีออกซินผ่านเนื้อเยื่อลงไปสู่ก้อนวุ้นที่ไม่มีออกซิน ซึ่งจากวิธีการนี้สามารถคำนวณความเร็วของการเคลื่อนที่ของออกซินในเนื้อเยื่อได้ เพราะทราบความยาวของท่อนเนื้อเยื่อ ความเร็วในการเคลื่อนที่แสดงเป็นระยะทางต่อหน่วยเวลา ซึ่งความเร็วในการเคลื่อนที่ของออกซินจะประมาณ 0.5-1.5 เซนติเมตรต่อชั่วโมง
การเคลื่อนที่ของออกซินจะเกิดแบบเบสิพีตัลก็เมื่อท่อนเนื้อเยื่อวางอยู่ในลักษณะปกติของลักษณะทางสัณฐานวิทยาเท่านั้น คือ ก้อนวุ้นที่เป็นก้อนที่รับออกซินจะต้องอยู่ทางด้านโคนของท่อนเนื้อเยื่อ ถ้าหากกลับท่อนเนื้อเยื่อเอาด้านโคนกลับขึ้นเป็นด้านยอด การเคลื่อนที่แบบเบสิพีตัลจะลดลงทันที
อัตราการเคลื่อนที่ของสารสังเคราะห์ที่มีคุณสมบัติของออกซิน จะช้ากว่าการ เคลื่อนที่ของ IAA แต่ลักษณะการเคลื่อนที่ของสารสังเคราะห์ เช่น 2,4-D IBA และ NAA ก็เกิดในลักษณะโพลาร์เช่นเดียวกับสาร IAA
การเคลื่อนที่ของออกซินในส่วนที่อยู่เหนือดินของพืช เกิดแบบอะโครพีตัล (Acropetal) ได้บ้างแต่น้อยมาก การเคลื่อนที่แบบโพลาร์จะลดลงเมื่ออายุของพืชเพิ่มมากขึ้น ในปัจจุบันยังไม่ทราบแน่ชัดว่าออกซินเคลื่อนที่ผ่านไปในส่วนใดของเนื้อเยื่ออาจจะเป็นแบบจากเซลล์หนึ่งไปยังอีกเซลล์หนึ่งเพราะการเคลื่อนที่ช้ากว่าการเคลื่อนที่ของสารในท่ออาหาร (Phloem) ซึ่งประมาณ 10-100 เซนติเมตรต่อชั่วโมง และการเคลื่อนที่ของสารในท่ออาหารจะเป็นแบบอะโครพีตัลมากกว่า ดังนั้นออกซินจึงไม่ได้เคลื่อนที่ในท่ออาหาร แต่การเคลื่อนที่ในรากอาจจะเป็นแบบตาม Phloem และเป็นที่เด่นชัดว่าออกซินไม่ได้เคลื่อนที่ในท่อน้ำของพืชเพราะการไหลของน้ำจะเป็นไปในทิศทางที่ขึ้นสู่ยอด และนอกจากนั้นท่อน้ำยังเป็นเนื้อเยื่อที่ตายแล้วไม่มีพลังงานที่จะทำให้ออกซินเคลื่อนที่แบบโพลาร์ได้ ในกรณีของโคลีออพไทล์ของพืชนั้นชี้ให้เห็นว่าออกซินเคลื่อนที่ผ่านเซลล์ทุกเซลล์ลงมา แต่ในกรณีของลำต้นนั้นยังไม่มีหลักฐานชี้ให้เห็นเด่นชัดนัก แต่อาจจะเป็นไปได้ว่าโปรแคมเบียม (Procambium) และแคมเบียม (Cambium) โดยเฉพาะส่วนที่จะกลายเป็นท่ออาหารอาจจะเป็นทางเคลื่อนที่ของออกซิน
การเคลื่อนที่ของออกซินในรากก็มีลักษณะเป็นโพลาร์ แต่เป็นแบบ อะโครพีตัล ซึ่งกลับกันกับกรณีของลำต้น ความเร็วของออกซินที่เคลื่อนที่ไปในรากพืชประมาณ 1 เซนติเมตรต่อ ชั่วโมง โดยคาดว่าเกิดในส่วนของแคมเบียมและท่ออาหารที่เกิดใหม่
การเคลื่อนที่ของออกซินเป็นกระบวนการที่ต้องใช้พลังงานโดยมีหลักฐานที่สนับสนุนดังนี้
1. การเคลื่อนที่เร็วกว่าการซึม 10 เท่า
2. เคลื่อนที่ได้ดีในสภาพที่มีออกซิเจนเท่านั้น และการเคลื่อนที่หยุดได้โดยสารบางชนิด (Inhibitor)
3. เคลื่อนที่จากบริเวณที่มีปริมาณมากไปสู่บริเวณที่มีปริมาณน้อย (Gradient)
4. เกิด Saturation Effect ได้
กลไกการทำงานของออกซิน
โดยทั่วไปฮอร์โมนจะสามารถก่อให้เกิดผลต่อการเจริญเติบโตได้ในปริมาณที่ต่ำมาก จึงสรุปกันว่าการทำงานของฮอร์โมนต้องเกี่ยวข้องกับการขยายสัญญาณของฮอร์โมน (Large Amplification) แล้วฮอร์โมนสามารถทำให้เกิดการเปลี่ยนแปลงของโมเลกุลจำนวนมากขึ้นได้ โดยทั่วไปฮอร์โมนจะมีผลต่อการเจริญเติบโตโดยผ่านมาทางการควบคุมการสังเคราะห์โปรตีนหรือกรดนิวคลีอิคควบคุม "pace-setter" ของเอนไซม์และควบคุมการยอมให้สารเข้าออกจากเซลล์ของเยื่อหุ้มเซลล์
กลไกในการทำงานของออกซินในระยะที่ผ่านมาจะมีแนวความคิดเป็นสองอย่าง คือ แนวคิดที่เกี่ยวข้องกับผนังเซลล์เป็นส่วนที่รับผลกระทบของออกซินและขยายตัว ส่วนอีกแนวคิดหนึ่งมุ่งไปที่ผลของออกซินต่อเมตาบอลิสม์ของกรดนิวคลีอิค ในปัจจุบันได้นำสองแนวคิดมาวิเคราะห์ ร่วมกันเพื่อศึกษากลไกในการทำงานของออกซิน และยังศึกษาผลของออกซินต่อเยื่อหุ้มเซลล์ด้วย
การขยายตัวของเซลล์จะสัมพันธ์กับการเปลี่ยนแปลงปริมาณและกิจกรรมของเอนไซม์ โดยที่ออกซินจะมีบทบาทต่อ กระบวนการเมตาบอลิสม์ของกรดนิวคลีอิค โดยการศึกษาจากการเพาะเลี้ยงเนื้อเยื่อที่เป็นไส้ของต้นยาสูบ (Tobacco Pith) ซึ่งจะเจริญไปเป็นกลุ่มเนื้อเยื่อ (Callus) นั้นพบว่ามีปริมาณของ RNA เพิ่มมากขึ้น ทั้งนี้เพราะออกซินจะกระตุ้นให้มีการสังเคราะห์ RNA มากขึ้น แล้วส่งผลไปถึงการเจริญของกลุ่มเนื้อเยื่อ ถ้าหากใช้สารระงับการสังเคราะห์โปรตีนหรือ RNA ความสามารถในการกระตุ้นการเจริญเติบโตของออกซินจะหายไป
การทดลองอีกเรื่องที่ชี้ให้เห็นว่าออกซินกระตุ้นให้มีการสร้าง RNA คือ การใช้นิวเคลียส หรือโครมาตินเลี้ยงไว้ในสารที่เป็นสารเริ่มต้นของ RNA เช่น ATP CTP GTP และ UTP ซึ่งสารเริ่มต้นเหล่านี้จะมีสารกัมมันตรังสีปรากฏอยู่ด้วย RNA ที่เกิดขึ้นมาใหม่จะมีสารกัมมันตรังสีด้วย ซึ่งการที่จะเกิด RNA ใหม่ขึ้นได้นี้เซลล์จะต้องได้รับออกซินก่อนที่นิวเคลียสหรือโครมาตินจะถูกแยกออกจากเซลล์เท่านั้น ซึ่งแสดงให้เห็นว่าออกซินไปกระตุ้นการสังเคราะห์ RNA
ดังนั้นจึงเป็นที่ชัดเจนว่าออกซินมีผลต่อระดับเอนไซม์ โดยผ่านทางการสังเคราะห์ RNA นอกจากนั้นออกซินยังมีผลกระทบต่อกิจกรรมของเอนไซม์โดยตรง เช่น การกระตุ้นให้เอนไซม์เกิดกิจกรรมหรือเปลี่ยนรูปมาอยู่ในรูปที่มีกิจกรรมได้ แต่ไม่ว่าออกซินจะมีผลกระทบต่อเอนไซม์แบบใดก็ตาม นักวิทยาศาสตร์ได้มุ่งความสนใจไปสู่เอนไซม์ที่สัมพันธ์กับกระบวนการขยายตัวของเซลล์ เซลล์พืชจะมีผนังเซลล์อยู่ข้างนอกสุด ดังนั้นการเจริญของเซลล์จะเกิดขึ้นได้เมื่อคุณสมบัติของผนังเซลล์เปลี่ยนไปในทางที่ก่อให้เกิดการขยายตัวของโปรโตพลาสต์ จากความจริงดังกล่าวการศึกษาทางด้านนี้จึงมุ่งไปสู่ผลกระทบของออกซินต่อคุณสมบัติของผนังเซลล์
เซลล์พืชทุกชนิดที่ผ่านขั้นตอนของเนื้อเยื่อเจริญมาแล้วจะผ่านขั้นตอนการเจริญเติบโต 2 ขั้น คือ การแบ่งเซลล์และการขยายตัวแวคคิวโอขึ้นภายในเซลล์ (Vacuolation) ในการศึกษาการเจริญเติบโตของโคลีออพไทล์ของข้าวโอ๊ต พบว่าการแบ่งเซลล์จะหยุดเมื่อมีความยาว 10 มิลลิเมตร การเจริญเติบโตที่เกิดขึ้นหลังจากนั้นจะเนื่องมาจากการขยายขนาดของเซลล์ ดังนั้นในการศึกษาถึงผลกระทบของออกซินต่อการเจริญเติบโตของพืชจึงเน้นไปที่ผลต่อการขยายตัวของเซลล์ ในระหว่างการขยายขนาดของเซลล์เพราะการขยายตัวของแวคคิวโอ หรืออาจจะเกิดช่องว่างภายในเซลล์ขึ้น ที่ผนังเซลล์จะเกิดการยืดตัวชนิดที่ไม่สามารถหดได้อีก มีการทดลองหลายการทดลองสนับสนุนว่าออกซินเพิ่มการยืดตัวของผนังเซลล์ (Plasticity)
ในระหว่างการขยายตัวของเซลล์นั้น ไม่เพียงแต่ผนังเซลล์ยืดตัวเท่านั้น แต่ยังมีการเพิ่มความหนาของผนังเซลล์เพราะมีสารใหม่ ๆ ไปเกาะด้วย ซึ่งการเจริญดังกล่าวนี้ก็เป็นผลจากการกระตุ้นของออกซิน ซึ่งจะเกิดขึ้นเมื่อการยืดตัวของเซลล์หยุดลงแล้ว
จากบทที่ 1 ได้กล่าวแล้วว่าผนังเซลล์ประกอบด้วยเซลล์ลูโลสไมโครไฟบริลฝังตัวอยู่ในส่วนที่เป็นแมททริกซ์ (Matrix) และโปรตีน ดังนั้นถ้าพิจารณาดูผนังเซลล์จะมีลักษณะเหมือนคอนกรีตเสริมเหล็กโดยเซลลูโลสจะเป็นส่วนของเหล็ก โมเลกุลของเซลลูโลสยึดติดกันด้วยแขนไฮโดรเจน (Hydrogen bond) ในขณะที่ส่วนของแมททริกซ์เกาะกันด้วยแขนโควาเลนท์ (Covalent bond) และในเนื้อเยื่อใบเลี้ยงของพืชใบเลี้ยงคู่ เซลลูโลสเกาะอยู่กับแมททริกซ์โดยแขนไฮโดรเจน ดังนั้นการที่ออกซินจะทำให้เซลล์ยืดตัวนั้นต้องทำลายแขนเหล่านี้เสียก่อน ในปัจจุบันเป็นที่ทราบกันแล้วว่าแม้ว่าการขยายตัวของเซลล์เกี่ยวข้องกับการสังเคราะห์โปรตีนและRNA รวมทั้งพลังงานจากการหายใจก็ตาม แต่ถ้าให้ออกซินจากภายนอกต่อลำต้นหรือโคลีออพไทล์อัตราการเจริญเติบโตจะเพิ่มขึ้นหลังจากระยะเวลา "lag" เพียง 2-3 นาทีเท่านั้น ซึ่งเป็นไปไม่ได้ที่การเจริญเติบโตถูกเร่งโดยการเปลี่ยนอัตราของการ Transcription และ Translation แต่ดูเหมือนว่าออกซินจะไปมีผลต่อระบบที่ปรากฏอยู่ในพืชแล้ว (Pre-formed System) ดังนั้นจากเหตุผลข้างต้น การทำลายการเกาะกันของโครงสร้างของผนังเซลล์จะไม่เกี่ยวข้องกับเอนไซม์
ในการทดลองต่อมานักวิทยาศาสตร์ได้นำเอาโคลีออพไทล์หรือลำต้นที่ไม่ได้รับแสงไปแช่ลงในสภาพที่มี pH ประมาณ 3 ปรากฏว่าโคลีออพไทล์และลำต้นสามารถยืดตัวได้ และเรียกปรากฏการณ์นี้ว่า "Acid Growth Effect" ซึ่งให้ผลเหมือนกับการให้ออกซินแก่พืช การทดลองนี้ได้นำไปสู่การศึกษาที่แสดงว่า ออกซินกระตุ้นการปลดปล่อย H+ หรือโปรตอนจากเนื้อเยื่อ ทำให้ pH ของผนังเซลล์ต่ำลง ซึ่งการปลดปล่อย H+ นี้ต้องใช้พลังงานจากการหายใจด้วย สมมุติฐานเกี่ยวกับ "Proton-Pump" นี้ คาดว่าเกิดในเยื่อหุ้มเซลล์
ในการยอมรับปรากฏการณ์ข้างต้นว่าเป็นการทำงานของออกซินในการกระตุ้นอัตราการเจริญเติบโตของพืช ต้องสามารถอธิบายเหตุผลว่าออกซินกระตุ้นการปลดปล่อย H+ ได้อย่างไรหรือทำไมการสังเคราะห์โปรตีนและ RNA จึงจำเป็นต่อการยืดตัวของเซลล์ และการเปลี่ยน pH ทำให้คุณสมบัติของผนังเซลล์เปลี่ยนไปได้อย่างไร
คำตอบว่าออกซินกระตุ้นการปลดปล่อย H+ อย่างไรนั้น ยังไม่ทราบแน่ชัด ยังต้องมีการทดลองอีกมากเพื่ออธิบาย การเจริญของเซลล์ต้องการ RNA และโปรตีนในช่วงที่เซลล์ยืดตัว เพราะในการยืดตัวของเซลล์นั้นผนังเซลล์ไม่ได้บางลงไป แต่ยังคงหนาเท่าเดิมหรือหนาขึ้น ดังนั้นจึงต้องมีการสร้างผนังเซลล์เพิ่มขึ้นด้วย ในการสร้างผนังเซลล์นั้นต้องใช้เอนไซม์และ RNA pH ต่ำมีผลต่อการเปลี่ยนคุณสมบัติของผนังเซลล์ในแง่ที่ว่า แขนที่เกาะกันของผนังเซลล์นั้นอาจจะถูกทำลายในสภาพที่ pH ต่ำ หรืออาจจะเป็น pH ที่เหมาะสมสำหรับเอนไซม์ ที่จะทำให้ผนังเซลล์เปลี่ยนไป
การตอบสนองของพืชต่อออกซิน
ที่มา : https://medscisin.files.wordpress.com/2014/02/e0b8a3e0b8b9e0b89be0b8a0e0b8b2e0b89e3.jpg
1. การตอบสนองในระดับเซลล์ ออกซินทำให้เกิดการขยายตัวของเซลล์ (Cell enlargement) เช่น ทำให้เกิดการขยายตัวของใบ ทำให้ผลเจริญเติบโต เช่น กรณีของสตรอเบอรี่ ถ้าหากกำจัดแหล่งของออกซิน ซึ่งคือส่วนของเมล็ดที่อยู่ภายนอกของผล (ผลแห้งแบบ Achene) จะทำให้เนื้อเยื่อของผลบริเวณที่ไม่มีเมล็ดรอบนอกไม่เจริญเติบโต ออกซินทำให้เกิดการแบ่งเซลล์ได้ในบางกรณี เช่น กระตุ้นการแบ่งเซลล์ของแคมเบียมและกระตุ้นให้เกิดการเปลี่ยนแปลงทางคุณภาพ เช่น กระตุ้นให้เกิดท่อน้ำและท่ออาหาร กระตุ้นให้เกิดรากจากการปักชำพืช เช่น การใช้ IBA ในการเร่งรากของกิ่งชำ แล้วยังกระตุ้นให้เกิดแคลลัส (Callus) ในการเพาะเลี้ยงเนื้อเยื่อ แต่การตอบสนองในระดับเซลล์ที่เกิดเสมอคือ การขยายตัวของเซลล์
2. การตอบสนองของอวัยวะหรือพืชทั้งต้น
2.1 เกี่ยวข้องกับการตอบสนองของพืชต่อแสง (Phototropism) Geotropism ดังได้กล่าวมาแล้ว
2.2 การที่ตายอดข่มไม่ให้ตาข้างเจริญเติบโต (Apical Dominance)
2.3 การติดผล เช่น กรณีของมะเขือเทศ ออกซินในรูปของ 4 CPA จะเร่งให้เกิดผลแบบ Pathenocarpic และในเงาะถ้าใช้ NAA 4.5 เปอร์เซ็นต์ จะเร่งการเจริญของเกสรตัวผู้ทำให้สามารถผสมกับเกสรตัวเมียได้ ในดอกที่ได้รับ NAA เกสรตัวเมียจะไม่เจริญเพราะได้รับ NAA ที่มีความเข้มข้นสูงเกินไป แต่เกสรตัวผู้ยังเจริญได้ ทำให้การติดผลเกิดมากขึ้น
2.4 ป้องกันการร่วงของผลโดยออกซินจะยับยั้งไม่ให้เกิด Abcission layer ขึ้นมา เช่น การใช้ 2,4-D ป้องกันผลส้มไม่ให้ร่วง หรือ NAA สามารถป้องกันการร่วงของผลมะม่วง
2.5 ป้องกันการร่วงของใบ
2.6 ในบางกรณีออกซินสามารถทำให้สัดส่วนของดอกตัวเมีย และตัวผู้เปลี่ยนไปโดยออกซินจะกระตุ้นให้มีดอกตัวเมียมากขึ้น
ไม่มีความคิดเห็น :
แสดงความคิดเห็น